Get the trends from a DFA as a data frame

dfa_trends(rotated_modelfit, years = NULL)

Arguments

rotated_modelfit

Output from rotate_trends.

years

Optional numeric vector of years.

Value

A data frame with the following columns: time is the time step, trend_number is an identifier for each trend, estimate is the trend mean, lower is the lower CI, and upper is the upper CI.

See also

plot_trends fit_dfa rotate_trends

Examples

set.seed(1)
s <- sim_dfa(num_trends = 1)
m <- fit_dfa(y = s$y_sim, num_trends = 1, iter = 50, chains = 1)
#> 
#> SAMPLING FOR MODEL 'dfa' NOW (CHAIN 1).
#> Chain 1: 
#> Chain 1: Gradient evaluation took 4.6e-05 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.46 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: WARNING: There aren't enough warmup iterations to fit the
#> Chain 1:          three stages of adaptation as currently configured.
#> Chain 1:          Reducing each adaptation stage to 15%/75%/10% of
#> Chain 1:          the given number of warmup iterations:
#> Chain 1:            init_buffer = 3
#> Chain 1:            adapt_window = 20
#> Chain 1:            term_buffer = 2
#> Chain 1: 
#> Chain 1: Iteration:  1 / 50 [  2%]  (Warmup)
#> Chain 1: Iteration:  5 / 50 [ 10%]  (Warmup)
#> Chain 1: Iteration: 10 / 50 [ 20%]  (Warmup)
#> Chain 1: Iteration: 15 / 50 [ 30%]  (Warmup)
#> Chain 1: Iteration: 20 / 50 [ 40%]  (Warmup)
#> Chain 1: Iteration: 25 / 50 [ 50%]  (Warmup)
#> Chain 1: Iteration: 26 / 50 [ 52%]  (Sampling)
#> Chain 1: Iteration: 30 / 50 [ 60%]  (Sampling)
#> Chain 1: Iteration: 35 / 50 [ 70%]  (Sampling)
#> Chain 1: Iteration: 40 / 50 [ 80%]  (Sampling)
#> Chain 1: Iteration: 45 / 50 [ 90%]  (Sampling)
#> Chain 1: Iteration: 50 / 50 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 0.013 seconds (Warm-up)
#> Chain 1:                0.005 seconds (Sampling)
#> Chain 1:                0.018 seconds (Total)
#> Chain 1: 
#> Warning: There were 1 chains where the estimated Bayesian Fraction of Missing Information was low. See
#> https://mc-stan.org/misc/warnings.html#bfmi-low
#> Warning: Examine the pairs() plot to diagnose sampling problems
#> Warning: The largest R-hat is 2.1, indicating chains have not mixed.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#r-hat
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess
#> Inference for the input samples (1 chains: each with iter = 25; warmup = 12):
#> 
#>                   Q5      Q50      Q95     Mean     SD  Rhat Bulk_ESS Tail_ESS
#> x[1,1]          -1.0     -1.0     -1.0     -1.0    0.0  2.06        3       13
#> x[1,2]           0.4      0.4      0.4      0.4    0.0  2.06        4       13
#> x[1,3]          -1.2     -1.2     -1.2     -1.2    0.0  2.06        4       13
#> x[1,4]          -2.4     -2.4     -2.4     -2.4    0.0  2.06        4       13
#> x[1,5]          -0.7     -0.7     -0.7     -0.7    0.0  1.87        4       13
#> x[1,6]           0.3      0.3      0.3      0.3    0.0  0.96        7       13
#> x[1,7]           1.6      1.6      1.6      1.6    0.0  2.06        4       13
#> x[1,8]           1.1      1.1      1.1      1.1    0.0  1.87        4       13
#> x[1,9]           2.0      2.0      2.0      2.0    0.0  2.06        4       13
#> x[1,10]          1.2      1.3      1.3      1.3    0.0  1.24        5       13
#> x[1,11]         -0.4     -0.4     -0.4     -0.4    0.0  1.71        4       13
#> x[1,12]         -0.5     -0.5     -0.5     -0.5    0.0  1.87        4       13
#> x[1,13]         -2.3     -2.3     -2.3     -2.3    0.0  2.06        4       13
#> x[1,14]         -0.9     -0.9     -0.9     -0.9    0.0  2.06        4       13
#> x[1,15]         -1.6     -1.6     -1.6     -1.6    0.0  2.06        4       13
#> x[1,16]         -0.9     -0.9     -0.9     -0.9    0.0  2.06        4       13
#> x[1,17]          0.0      0.0      0.0      0.0    0.0  1.45        5       13
#> x[1,18]          1.1      1.1      1.1      1.1    0.0  1.37        5       13
#> x[1,19]          1.8      1.8      1.8      1.8    0.0  1.71        4       13
#> x[1,20]          0.4      0.4      0.4      0.4    0.0  1.37        5       13
#> Z[1,1]         -99.6    -99.6    -99.6    -99.6    0.0  1.71        4       13
#> Z[2,1]          37.1     37.3     37.8     37.3    0.2  2.06        4       13
#> Z[3,1]          16.1     16.2     16.4     16.3    0.1  2.06        4       13
#> Z[4,1]         -60.8    -60.5    -60.4    -60.5    0.2  2.06        3       13
#> log_lik[1]    -763.9   -652.0   -620.6   -669.9   50.8  2.06        3       13
#> log_lik[2]    -115.3    -96.3    -91.1    -99.3    8.6  2.06        3       13
#> log_lik[3]     -23.6    -20.0    -18.9    -20.6    1.7  2.06        3       13
#> log_lik[4]    -291.8   -246.8   -234.0   -254.0   20.5  2.06        3       13
#> log_lik[5]    -130.4   -117.0   -112.2   -118.8    6.4  2.06        3       13
#> log_lik[6]     -23.9    -21.1    -20.2    -21.5    1.3  2.06        3       13
#> log_lik[7]      -3.8     -3.6     -3.5     -3.6    0.1  2.06        4       13
#> log_lik[8]     -40.2    -36.0    -34.5    -36.6    2.0  2.06        3       13
#> log_lik[9]   -1191.0  -1008.1   -960.6  -1038.5   81.8  2.06        3       13
#> log_lik[10]   -175.2   -144.9   -137.2   -149.9   13.5  2.06        3       13
#> log_lik[11]    -43.1    -36.1    -34.1    -37.3    3.2  2.06        3       13
#> log_lik[12]   -487.1   -408.8   -388.1   -421.7   35.1  2.06        3       13
#> log_lik[13]  -4836.0  -4119.4  -3929.1  -4237.3  322.0  2.06        3       13
#> log_lik[14]   -677.8   -562.6   -532.9   -581.5   51.4  2.06        3       13
#> log_lik[15]   -142.3   -118.7   -111.8   -122.5   10.8  2.06        3       13
#> log_lik[16]  -1852.6  -1562.7  -1484.6  -1610.2  130.6  2.06        3       13
#> log_lik[17]   -426.9   -356.8   -341.4   -369.6   30.7  2.06        3       13
#> log_lik[18]    -64.6    -53.0    -50.5    -55.1    5.1  2.06        3       13
#> log_lik[19]    -14.0    -11.8    -11.3    -12.2    1.0  2.06        3       13
#> log_lik[20]   -163.5   -135.6   -129.3   -140.6   12.3  2.06        3       13
#> log_lik[21]    -61.6    -55.0    -51.7    -55.6    3.5  2.06        3       13
#> log_lik[22]    -10.9     -9.8     -9.2     -9.9    0.6  2.06        3       13
#> log_lik[23]     -2.7     -2.7     -2.6     -2.7    0.0  2.06        4       13
#> log_lik[24]    -22.7    -20.3    -19.1    -20.5    1.3  2.06        3       13
#> log_lik[25]  -2201.5  -1891.3  -1793.6  -1936.6  143.6  2.06        3       13
#> log_lik[26]   -325.3   -272.8   -257.1   -280.6   24.1  2.06        3       13
#> log_lik[27]    -61.3    -51.7    -48.5    -53.2    4.5  2.06        3       13
#> log_lik[28]   -822.6   -699.8   -661.0   -717.8   56.9  2.06        3       13
#> log_lik[29]  -1091.4   -933.9   -883.5   -956.3   73.0  2.06        3       13
#> log_lik[30]   -156.6   -130.9   -123.1   -134.7   11.8  2.06        3       13
#> log_lik[31]    -28.9    -24.4    -22.9    -25.1    2.1  2.06        3       13
#> log_lik[32]   -397.9   -337.2   -317.8   -345.9   28.2  2.06        3       13
#> log_lik[33]  -3348.2  -2873.4  -2727.0  -2943.1  218.7  2.06        3       13
#> log_lik[34]   -468.3   -391.9   -369.4   -403.2   34.9  2.06        3       13
#> log_lik[35]    -92.0    -77.3    -72.5    -79.5    6.9  2.06        3       13
#> log_lik[36]  -1240.0  -1053.6   -995.9  -1081.0   86.0  2.06        3       13
#> log_lik[37]  -1304.0  -1122.5  -1063.5  -1147.0   84.0  2.06        3       13
#> log_lik[38]   -188.8   -158.7   -149.4   -162.9   13.8  2.06        3       13
#> log_lik[39]    -40.6    -34.4    -32.3    -35.3    2.9  2.06        4       13
#> log_lik[40]   -501.2   -427.4   -403.4   -437.5   34.2  2.06        3       13
#> log_lik[41]   -114.2    -93.8    -90.7    -98.3    8.8  2.06        4       13
#> log_lik[42]    -17.2    -14.1    -13.6    -14.8    1.3  2.06        4       13
#> log_lik[43]     -4.7     -4.2     -4.1     -4.3    0.2  2.06        4       13
#> log_lik[44]    -43.2    -35.4    -34.1    -37.1    3.4  2.06        3       13
#> log_lik[45]   -202.1   -163.2   -156.0   -171.2   16.8  2.06        3       13
#> log_lik[46]    -26.8    -21.4    -20.4    -22.5    2.3  2.06        3       13
#> log_lik[47]     -7.8     -6.6     -6.4     -6.9    0.5  2.06        3       13
#> log_lik[48]    -80.5    -64.8    -61.7    -67.9    6.8  2.06        3       13
#> log_lik[49]  -4509.2  -3816.0  -3634.1  -3933.2  311.7  2.06        3       13
#> log_lik[50]   -646.1   -533.2   -504.4   -552.1   50.5  2.06        3       13
#> log_lik[51]   -120.7    -99.9    -94.0   -103.4    9.5  2.06        3       13
#> log_lik[52]  -1661.2  -1391.7  -1320.0  -1437.0  121.5  2.06        3       13
#> log_lik[53]   -734.7   -604.7   -574.6   -628.5   57.4  2.06        3       13
#> log_lik[54]   -111.6    -90.1    -85.1    -93.9    9.5  2.06        3       13
#> log_lik[55]    -21.0    -17.2    -16.3    -17.9    1.7  2.06        3       13
#> log_lik[56]   -272.7   -222.4   -210.6   -231.6   22.3  2.06        3       13
#> log_lik[57]  -2111.4  -1777.3  -1689.6  -1833.5  150.1  2.06        3       13
#> log_lik[58]   -303.1   -249.0   -235.2   -258.1   24.2  2.06        3       13
#> log_lik[59]    -56.3    -46.5    -43.8    -48.2    4.5  2.06        3       13
#> log_lik[60]   -766.2   -638.4   -604.5   -659.8   57.5  2.06        3       13
#> log_lik[61]   -720.1   -603.1   -574.8   -624.2   52.3  2.06        3       13
#> log_lik[62]   -116.9    -96.1    -91.1    -99.8    9.3  2.06        3       13
#> log_lik[63]    -20.4    -17.0    -16.1    -17.6    1.5  2.06        4       13
#> log_lik[64]   -265.4   -220.3   -209.1   -228.3   20.2  2.06        3       13
#> log_lik[65]     -2.0     -2.0     -1.9     -2.0    0.0  1.25       13       13
#> log_lik[66]     -1.9     -1.9     -1.8     -1.9    0.0  2.06        3       13
#> log_lik[67]     -1.9     -1.9     -1.8     -1.9    0.0  2.06        3       13
#> log_lik[68]     -1.9     -1.9     -1.9     -1.9    0.0  1.58        4       13
#> log_lik[69]   -907.7   -773.7   -730.5   -791.8   61.6  2.06        3       13
#> log_lik[70]   -137.2   -114.3   -107.3   -117.5   10.4  2.06        3       13
#> log_lik[71]    -32.3    -27.3    -25.7    -28.0    2.3  2.06        4       13
#> log_lik[72]   -368.3   -311.2   -292.9   -319.0   26.3  2.06        3       13
#> log_lik[73]  -2786.6  -2372.0  -2246.2  -2432.4  188.9  2.06        3       13
#> log_lik[74]   -389.2   -323.0   -303.7   -332.8   29.9  2.06        3       13
#> log_lik[75]    -85.2    -71.2    -66.7    -73.3    6.5  2.06        3       13
#> log_lik[76]  -1082.2   -912.5   -860.8   -937.3   77.5  2.06        3       13
#> log_lik[77]   -151.7   -124.6   -115.7   -127.7   12.2  2.06        4       13
#> log_lik[78]    -22.4    -18.3    -17.0    -18.8    1.8  2.06        3       13
#> log_lik[79]     -8.5     -7.3     -6.9     -7.5    0.5  2.06        4       13
#> log_lik[80]    -69.2    -56.8    -52.8    -58.3    5.6  2.06        3       13
#> xstar[1,1]      -0.8      0.8      1.7      0.6    0.9  0.94       13       13
#> sigma[1]         2.4      2.6      2.7      2.6    0.1  2.06        3       13
#> lp__        -50482.1 -43853.2 -41986.7 -44903.8 3005.0  2.06        3       13
#> 
#> For each parameter, Bulk_ESS and Tail_ESS are crude measures of 
#> effective sample size for bulk and tail quantities respectively (an ESS > 100 
#> per chain is considered good), and Rhat is the potential scale reduction 
#> factor on rank normalized split chains (at convergence, Rhat <= 1.05).
r <- rotate_trends(m)
trends <- dfa_trends(r)