Get the fitted values from a DFA as a data frame

dfa_fitted(modelfit, conf_level = 0.95, names = NULL)

Arguments

modelfit

Output from fit_dfa.

conf_level

Probability level for CI.

names

Optional vector of names for time series labels. Should be same length as the number of time series.

Value

A data frame with the following columns: ID is an identifier for each time series, time is the time step, y is the observed values standardized to mean 0 and unit variance, estimate is the mean fitted value, lower is the lower CI, and upper is the upper CI.

See also

predicted plot_fitted fit_dfa

Examples

# \donttest{
y <- sim_dfa(num_trends = 2, num_years = 20, num_ts = 4)
m <- fit_dfa(y = y$y_sim, num_trends = 2, iter = 50, chains = 1)
#> 
#> SAMPLING FOR MODEL 'dfa' NOW (CHAIN 1).
#> Chain 1: 
#> Chain 1: Gradient evaluation took 0.000142 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 1.42 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1: 
#> Chain 1: 
#> Chain 1: WARNING: There aren't enough warmup iterations to fit the
#> Chain 1:          three stages of adaptation as currently configured.
#> Chain 1:          Reducing each adaptation stage to 15%/75%/10% of
#> Chain 1:          the given number of warmup iterations:
#> Chain 1:            init_buffer = 3
#> Chain 1:            adapt_window = 20
#> Chain 1:            term_buffer = 2
#> Chain 1: 
#> Chain 1: Iteration:  1 / 50 [  2%]  (Warmup)
#> Chain 1: Iteration:  5 / 50 [ 10%]  (Warmup)
#> Chain 1: Iteration: 10 / 50 [ 20%]  (Warmup)
#> Chain 1: Iteration: 15 / 50 [ 30%]  (Warmup)
#> Chain 1: Iteration: 20 / 50 [ 40%]  (Warmup)
#> Chain 1: Iteration: 25 / 50 [ 50%]  (Warmup)
#> Chain 1: Iteration: 26 / 50 [ 52%]  (Sampling)
#> Chain 1: Iteration: 30 / 50 [ 60%]  (Sampling)
#> Chain 1: Iteration: 35 / 50 [ 70%]  (Sampling)
#> Chain 1: Iteration: 40 / 50 [ 80%]  (Sampling)
#> Chain 1: Iteration: 45 / 50 [ 90%]  (Sampling)
#> Chain 1: Iteration: 50 / 50 [100%]  (Sampling)
#> Chain 1: 
#> Chain 1:  Elapsed Time: 0.025 seconds (Warm-up)
#> Chain 1:                0.188 seconds (Sampling)
#> Chain 1:                0.213 seconds (Total)
#> Chain 1: 
#> Warning: There were 11 divergent transitions after warmup. See
#> https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
#> to find out why this is a problem and how to eliminate them.
#> Warning: There were 1 chains where the estimated Bayesian Fraction of Missing Information was low. See
#> https://mc-stan.org/misc/warnings.html#bfmi-low
#> Warning: Examine the pairs() plot to diagnose sampling problems
#> Warning: The largest R-hat is NA, indicating chains have not mixed.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#r-hat
#> Warning: Bulk Effective Samples Size (ESS) is too low, indicating posterior means and medians may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#bulk-ess
#> Warning: Tail Effective Samples Size (ESS) is too low, indicating posterior variances and tail quantiles may be unreliable.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#tail-ess
#> Inference for the input samples (1 chains: each with iter = 25; warmup = 12):
#> 
#>                 Q5   Q50   Q95   Mean    SD  Rhat Bulk_ESS Tail_ESS
#> x[1,1]        -0.9  -0.3   0.0   -0.5   0.4  1.38        8        6
#> x[2,1]         0.3   1.1   1.9    1.1   0.6  2.12        4       13
#> x[1,2]        -1.8  -1.0  -0.2   -1.0   0.6  1.60        4        6
#> x[2,2]         0.5   0.9   2.0    1.1   0.6  1.47        6       13
#> x[1,3]        -2.5  -2.0  -0.7   -1.8   0.7  1.74        4        6
#> x[2,3]         1.4   1.8   2.4    1.9   0.4  2.07       11       13
#> x[1,4]        -1.8  -0.7   0.6   -0.7   0.9  1.91        4        6
#> x[2,4]         1.5   2.3   2.5    2.1   0.4  2.07        4       13
#> x[1,5]        -0.9   0.0   1.9    0.3   1.1  1.74        4        6
#> x[2,5]         1.7   2.4   2.7    2.3   0.4  1.45        9       13
#> x[1,6]        -2.2  -1.9   0.0   -1.3   1.0  1.60        4        6
#> x[2,6]         0.4   1.5   1.9    1.3   0.6  1.58        5       13
#> x[1,7]        -0.7  -0.4   2.0    0.3   1.2  1.91        4        6
#> x[2,7]        -0.1   0.9   1.3    0.6   0.6  1.91        5       13
#> x[1,8]        -0.8  -0.4   2.0    0.3   1.2  1.87        4       13
#> x[2,8]        -0.6   0.3   0.5    0.0   0.5  1.87        4       13
#> x[1,9]         0.2   0.6   2.7    1.2   1.0  1.71        4       13
#> x[2,9]        -0.8   0.4   1.3    0.3   0.9  1.91        4       13
#> x[1,10]        0.9   1.8   3.1    1.9   0.7  1.32        6       13
#> x[2,10]       -1.8  -0.9  -0.1   -0.8   0.7  2.07        4       13
#> x[1,11]        0.8   1.7   3.0    1.8   0.7  1.49        6       13
#> x[2,11]       -0.4   1.2   1.6    0.9   0.8  1.87        4       13
#> x[1,12]       -0.7   0.7   1.2    0.4   0.7  0.91       10       13
#> x[2,12]       -1.7  -1.0   0.0   -0.8   0.6  1.04        9       13
#> x[1,13]       -0.4   0.7   1.7    0.5   0.7  1.49       13       13
#> x[2,13]       -2.3  -1.8  -0.7   -1.5   0.6  1.03       13       13
#> x[1,14]       -0.5   0.9   1.3    0.6   0.6  1.37       13       13
#> x[2,14]       -1.9  -1.5  -0.5   -1.3   0.5  1.00        9       13
#> x[1,15]       -0.7   1.2   1.6    1.0   1.1  1.32        5       13
#> x[2,15]       -1.3  -0.8   0.1   -0.8   0.5  1.19        7       13
#> x[1,16]       -1.0   1.2   1.4    0.8   1.3  1.87       13       13
#> x[2,16]       -2.4  -1.9  -1.3   -1.8   0.4  1.71        9       13
#> x[1,17]       -1.1   1.3   1.7    0.9   1.6  0.92       13       13
#> x[2,17]       -3.5  -2.4  -2.2   -2.7   0.5  1.00       11       13
#> x[1,18]       -2.0   0.5   1.3    0.2   1.8  0.93       13       13
#> x[2,18]       -2.6  -1.5  -1.0   -1.7   0.6  0.98       10       13
#> x[1,19]       -2.6   0.4   0.7   -0.2   1.8  2.07        4       13
#> x[2,19]       -3.4  -2.7  -1.7   -2.5   0.7  0.98       12       13
#> x[1,20]       -1.6   1.5   2.1    1.0   1.8  2.07        4       13
#> x[2,20]       -2.5  -1.8  -0.7   -1.6   0.7  1.03       11       13
#> Z[1,1]        -1.9   0.5   0.7    0.0   1.5  2.07        4       13
#> Z[2,1]        -0.6  -0.1   0.3   -0.1   0.3  1.24       13       13
#> Z[3,1]        -0.6   0.5   0.6    0.3   0.4  1.33        9       13
#> Z[4,1]        -0.3   0.3   0.6    0.2   0.3  1.60       13       13
#> Z[1,2]         0.0   0.0   0.0    0.0   0.0  1.00       13       13
#> Z[2,2]        -0.7  -0.4   0.0   -0.4   0.3  1.12       13       13
#> Z[3,2]         0.2   0.5   0.8    0.5   0.3  1.12        8       13
#> Z[4,2]        -0.6  -0.4   0.3   -0.3   0.4  1.13       13       13
#> log_lik[1]    -3.3  -1.2  -0.7   -1.5   1.4  1.33        5       13
#> log_lik[2]    -3.1  -0.7  -0.5   -1.1   1.5  1.60        4       13
#> log_lik[3]    -3.2  -0.6  -0.4   -1.1   1.5  1.71        4       13
#> log_lik[4]    -3.4  -1.3  -0.5   -1.5   1.4  1.38        5       13
#> log_lik[5]    -4.3  -1.9  -0.8   -2.0   1.4  1.71        4       13
#> log_lik[6]    -3.7  -1.2  -0.5   -1.5   1.5  1.59        4       13
#> log_lik[7]    -3.3  -1.0  -0.6   -1.3   1.4  1.30       13       13
#> log_lik[8]    -4.1  -2.0  -0.7   -2.1   1.4  1.33        5       13
#> log_lik[9]    -4.0  -1.0  -0.5   -1.6   1.6  1.87        4       13
#> log_lik[10]   -4.0  -0.7  -0.4   -1.4   1.5  1.48        5       13
#> log_lik[11]   -4.8  -1.2  -0.6   -1.7   1.6  0.92       10       13
#> log_lik[12]   -3.5  -0.9  -0.5   -1.3   1.5  1.49        5       13
#> log_lik[13]   -3.6  -0.9  -0.4   -1.4   1.5  1.91        4       13
#> log_lik[14]   -3.5  -0.6  -0.5   -1.2   1.5  1.50        4       13
#> log_lik[15]   -3.5  -0.7  -0.5   -1.3   1.5  1.48        5       13
#> log_lik[16]   -3.2  -0.7  -0.5   -1.1   1.5  1.58        4       13
#> log_lik[17]   -4.9  -2.1  -1.2   -2.4   1.4  1.49        4       13
#> log_lik[18]   -3.4  -0.6  -0.5   -1.2   1.5  1.33        5       13
#> log_lik[19]   -3.5  -1.0  -0.5   -1.4   1.5  1.47       13       13
#> log_lik[20]   -4.2  -1.1  -0.6   -1.5   1.5  0.96       13       13
#> log_lik[21]   -4.0  -1.6  -0.5   -1.9   1.4  1.18        8       13
#> log_lik[22]   -3.3  -0.8  -0.5   -1.2   1.5  0.92       13       13
#> log_lik[23]   -4.1  -1.6  -0.7   -1.8   1.4  1.47       13       13
#> log_lik[24]   -4.7  -2.3  -1.1   -2.7   1.4  1.06       12       13
#> log_lik[25]   -3.8  -0.9  -0.6   -1.5   1.5  2.07        4       13
#> log_lik[26]   -3.1  -0.7  -0.5   -1.1   1.5  1.71        4       13
#> log_lik[27]   -3.4  -0.8  -0.6   -1.3   1.5  1.19       13       13
#> log_lik[28]   -3.3  -0.6  -0.4   -1.1   1.5  1.87        4       13
#> log_lik[29]   -4.6  -1.4  -1.1   -2.1   1.4  2.07        4       13
#> log_lik[30]   -4.5  -1.4  -1.2   -2.0   1.4  1.87        5       13
#> log_lik[31]   -3.8  -0.8  -0.7   -1.3   1.5  1.58       10       13
#> log_lik[32]   -4.0  -1.0  -0.6   -1.5   1.5  1.74        4       13
#> log_lik[33]   -4.2  -1.9  -1.2   -2.2   1.3  1.47        8       13
#> log_lik[34]   -4.7  -1.3  -0.6   -1.9   1.6  1.31        5       13
#> log_lik[35]   -7.6  -2.0  -1.4   -3.0   2.5  1.25        5       13
#> log_lik[36]   -3.6  -0.8  -0.4   -1.2   1.5  2.12        3       13
#> log_lik[37]   -3.2  -1.0  -0.7   -1.3   1.4  0.98       12       13
#> log_lik[38]   -4.5  -1.1  -0.7   -1.7   1.5  1.24        7       13
#> log_lik[39]  -10.9  -4.6  -2.7   -5.7   3.8  1.71        9       13
#> log_lik[40]   -3.1  -0.7  -0.5   -1.1   1.5  2.12        3       13
#> log_lik[41]   -3.1  -0.6  -0.5   -1.1   1.5  1.04       13       13
#> log_lik[42]   -4.1  -1.5  -0.7   -1.8   1.4  0.96       13       13
#> log_lik[43]   -3.8  -1.2  -0.6   -1.6   1.4  1.03       13       13
#> log_lik[44]   -3.9  -1.4  -0.7   -1.7   1.4  1.49       13       13
#> log_lik[45]   -3.3  -0.9  -0.5   -1.3   1.5  1.12        7       13
#> log_lik[46]   -3.1  -0.8  -0.4   -1.1   1.5  1.19        6       13
#> log_lik[47]   -3.1  -0.7  -0.4   -1.0   1.5  1.60        4       13
#> log_lik[48]   -3.2  -0.8  -0.4   -1.1   1.5  1.32        6       13
#> log_lik[49]   -3.8  -1.3  -1.1   -1.8   1.3  0.96       13       13
#> log_lik[50]   -3.9  -1.2  -0.7   -1.7   1.4  1.19        7       13
#> log_lik[51]   -4.8  -1.9  -1.2   -2.3   1.3  0.98       13       13
#> log_lik[52]   -3.5  -0.9  -0.5   -1.4   1.5  1.14        7       13
#> log_lik[53]   -3.1  -0.6  -0.4   -1.0   1.5  1.50        5       13
#> log_lik[54]   -3.1  -0.7  -0.5   -1.1   1.5  1.25       13       13
#> log_lik[55]   -3.1  -0.7  -0.6   -1.1   1.5  1.19        8       13
#> log_lik[56]   -3.1  -0.7  -0.5   -1.2   1.5  0.95       13       13
#> log_lik[57]   -3.2  -0.7  -0.4   -1.2   1.5  2.12        4       13
#> log_lik[58]   -3.5  -0.9  -0.5   -1.3   1.5  1.87        4       13
#> log_lik[59]   -3.2  -0.8  -0.6   -1.2   1.5  1.19        9       13
#> log_lik[60]   -3.1  -0.7  -0.5   -1.1   1.5  1.87        4       13
#> log_lik[61]   -3.2  -0.7  -0.5   -1.2   1.5  2.07        4       13
#> log_lik[62]   -3.1  -0.7  -0.5   -1.1   1.5  1.48        5       13
#> log_lik[63]   -3.5  -0.7  -0.5   -1.3   1.5  1.49        5       13
#> log_lik[64]   -3.1  -0.7  -0.4   -1.1   1.5  1.30        6       13
#> log_lik[65]   -3.4  -1.2  -0.7   -1.5   1.4  1.87        4       13
#> log_lik[66]   -3.1  -0.7  -0.5   -1.1   1.5  1.71        4       13
#> log_lik[67]   -3.3  -1.0  -0.4   -1.3   1.5  2.12        4       13
#> log_lik[68]   -3.3  -0.6  -0.5   -1.1   1.5  1.48        5       13
#> log_lik[69]   -3.5  -1.4  -0.8   -1.7   1.3  1.30        5       13
#> log_lik[70]   -3.4  -1.3  -0.7   -1.5   1.4  1.05       13       13
#> log_lik[71]   -3.4  -1.1  -0.6   -1.5   1.4  1.27        7       13
#> log_lik[72]   -3.1  -0.7  -0.5   -1.1   1.5  1.60        5       13
#> log_lik[73]   -3.8  -1.6  -1.1   -1.9   1.3  1.71        4       13
#> log_lik[74]   -3.4  -0.6  -0.5   -1.2   1.5  1.48        5       13
#> log_lik[75]   -3.2  -0.7  -0.4   -1.2   1.5  1.16        6       13
#> log_lik[76]   -3.9  -0.6  -0.5   -1.2   1.5  1.60        4       13
#> log_lik[77]   -3.2  -0.7  -0.5   -1.2   1.5  1.87        4       13
#> log_lik[78]   -3.6  -0.7  -0.4   -1.2   1.5  1.31        5       13
#> log_lik[79]   -4.8  -1.2  -0.5   -1.7   1.6  1.19        6       13
#> log_lik[80]   -3.1  -0.7  -0.4   -1.1   1.5  1.48        5       13
#> xstar[1,1]    -2.2   1.7   2.5    0.9   2.0  1.07       13       13
#> xstar[2,1]    -3.2  -1.5   0.3   -1.5   1.2  1.22        7       13
#> sigma[1]       0.6   0.7  68.8   13.8  47.0  1.40        5        6
#> lp__        -277.2 -79.7 -59.9 -113.1 119.6  2.12        3       13
#> 
#> For each parameter, Bulk_ESS and Tail_ESS are crude measures of 
#> effective sample size for bulk and tail quantities respectively (an ESS > 100 
#> per chain is considered good), and Rhat is the potential scale reduction 
#> factor on rank normalized split chains (at convergence, Rhat <= 1.05).
fitted <- dfa_fitted(m)
# }